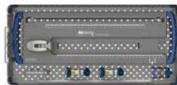


AA-ARS" ACL


DEDICATED INSTRUMENTS

KNEE GENERAL TRAY (1 LEVEL)

KNEE PREP. TABLE TRAY (1 LEVEL)

DEDICATED SURGICAL TECHNIQUE

1. Graft Preparation

4. Tibial Tunnel Creation

2. Graft Reinforcement

5. Anatomical Tunnels

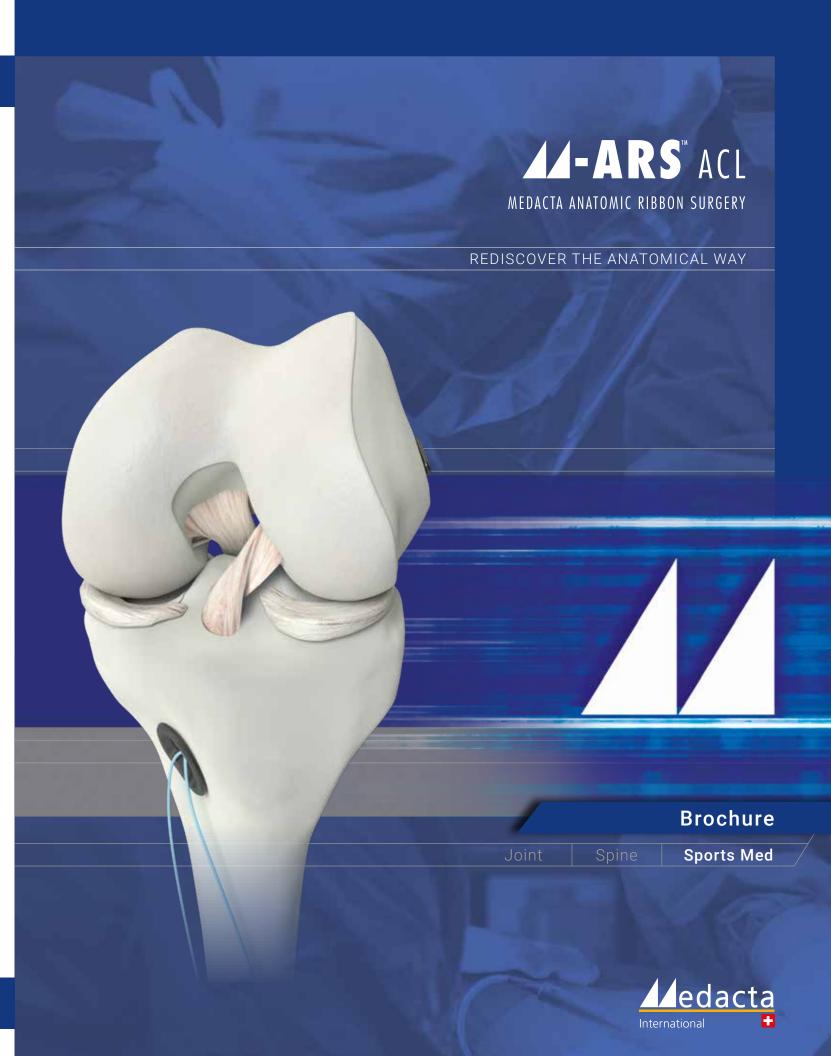
3. Femoral Tunnel Creation

6. Anatomical Graft Insertion

REFERENCES

[1] Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych MJ. Incidence of Anterior Cruciate Ligament Tears and Reconstruction: a 21-Year Population-Based Study. American Journal Sports Medicine. 2016 June; 44(6): 1502-7. doi:10.1177/0363546516629944. [2] David Zbrojkiewicz, Christopher Vertullo and Jane E Grayson. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Medical Journal of Australia. 2018; 208 (8): 354-358. [I doi: 10.5694/mja17.00974. [3] Pierre Chambat, corresponding author Christian Guier, Bertrand Sonnery-Cottet, Jean-Marie Fayard, and Mathieu Thaunat. The evolution of ACL reconstruction over the last fifty years. Int Orthop, 2013 Feb; 37(2): 181-186. doi: 10.1007/s00264-012-1759-3. [4] Simple lesk IR, Zdanowicz U, Drwiega M, Ciszek B, Ciszkowska-Lyson B, Siebold R, Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111. U, Drwiega M, Ciszek B, Ciszkowska-Lyson B, Siebold R. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surgery, Sports Traumatology, Arthroscopy. 2015;23(11):3143-3150. doi:10.1007/s00167-014-3146-7. [5] Rainer Siebold, Peter Schuhmacher, Axel Brehmer, Francis Fernadez, Robert Smigielski, Joachim Kirsch. Tibial C-Shaped Insertion of the Anterior Cruciate Ligament Without Posterolateral Bundle. Anterior Cruciate Ligament Reconstruction: A Practical Surgical Guide, Springer Berlin Heidelberg. 2014;19-27. [6] Robert S migielski, Urszula Zdanowicz, Michał Drwieg, Bogdan Ciszek, and Rainer Siebold, Ribbon like Anatomy of the Anterior Cruciate Ligament from Its Femoral Insertion to the Midsubstance. Anterior Cruciate Ligament Reconstruction: A Practical Surgical Guide, Springer Berlin Heidelberg. 2014;310. [7] Tomoyuki Mochizuki, Akimoto Nimura, Kazunori Yasuda, Takeshi Muneta, and Keiichi Akita, Anatomic and Histological Analysis of the Midsubstance and Fanilke Extension Fibers of the ACL, Anterior Cruciate Ligament Reconstruction: A Practical Surgical Guide, Springer Berlin Heidelberg. 2014;31-17. [8] Rainer Siebold and Robert S migielski, Arthroscopic Appearance of the "C" -Shaped Insertion of the Anterior Cruciate Ligament, Anterior Cruciate Ligament Reconstruction: A Practical Surgical Guide, Springer Berlin Heidelberg. 2014;33-35. [9] CD. Murawski et al, Anatomic Anterior Cruciate Ligament Reconstruction Current Concepts and Future Perspective, Cartilage. 2013 Jul; 4(3 Suppl): 275–37S. doi: 10.1177/1947603513486557. [10] Petersen W, Forkel P, Achtnich A, Metzlaff S, Zantop T. Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers. Arch Orthop Trauma Surg. 2013 Jun;133(6):827-33. doi: 10.1007/s00402-013-1741-6. PMID: 23632778 [PubMed - indexed for MEDLINE]. [11] R. Siebold, P Schuhmacher, F Fernandez, R S migielski, C Finik, A Brehmer, J Raindisubsta

All trademarks and registered trademarks are the property of their respective owners. This document is intended for the US market.


Strada Regina - 6874 Castel San Pietro - Switzerland Phone +41 91 696 60 60 - Fax + 41 91 696 60 66 Info@medacta.ch - www.medacta.com

1556 West Carroll Avenue - Chicago - Illinois 60607 Phone +1 312 878 2381 - Fax +1 312 546 6881

info@medacta.us.com

M-ARS™ ACL ref: 99.101.11US rev.00 Last update: July 2019

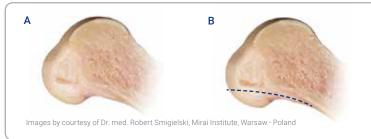
REDISCOVER THE ANATOMICAL WAY

INTRODUCTION

ANATOMY

The main function of the ACL is the restraint of anteroposterior translation of the tibia relative to the femur. It also acts as a secondary restraint to tibial rotation and valgus or varus stress.

EPIDEMIOLOGY


The mechanism of injury is typically a sudden deceleration or rotational maneuver with a force that sends the tibia one way and the femur another (typically because the foot is planted and the body spins). The incidence of ACL tears is considered a common orthopedic injury with an annual incidence of 68.6 on 100.000 population in US^[1] and 77.4 on 100.000 in Australia. [2]

TREATMENT

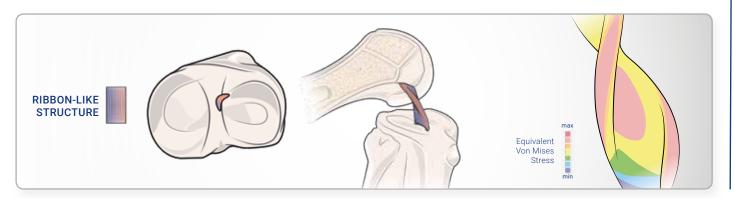
Anterior cruciate ligament (ACL) reconstruction has evolved considerably over the past 30 years. This has largely been due to a better understanding of ACL anatomy and in particular due to a precise description of the femoral and tibial insertions of its two bundles. [3]

Based on anatomical studies^[4,5,6,7,8,11,13] and thanks to the experiences learned in recent years^[3], there is a better understanding of the anatomy and biomechanics of the ACL. It has been documented that the ACL is neither round nor double round but it is flat (ribbon-like) with a specific C-shape tibial insertion. ^[4,5,6,7,8,11,13]

The current trend in ACL reconstruction is to be more anatomical respecting ACL bone insertion and the kinematics of the native ACL. [9,10,12]

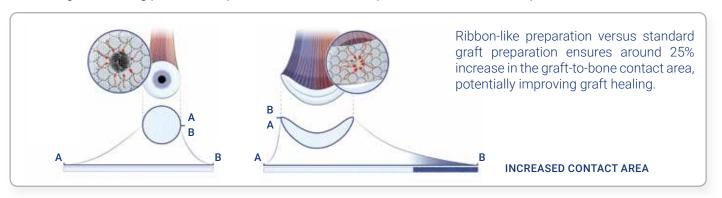
(A) Cadaveric dissection of the right lateral femoral condyle. Notice that the femoral insertion of ribbon-like ACL fibres is in line with posterior femoral cortex (marked with black dotted line (B)).

WHY M-ARS ACL?



M-ARS ACL is an original concept to mimic the native anatomical ACL in cruciate ligament reconstruction:

- INNOVATIVE SINGLE BUNDLE WITH MORE NATURAL STRESS DISTRIBUTION
- IMPROVED HEALING
- DEDICATED IMPLANTS
- DEDICATED INSTRUMENTS
- DEDICATED SURGICAL TECHNIQUE


INNOVATIVE SINGLE BUNDLE WITH MORE NATURAL STRESS DISTRIBUTION

The ribbon-like structure of the graft does reproduce the anatomy and can potentially better replicate the kinematics of the two bundles of the native ACL.

IMPROVED HEALING

Possible lower risk of necrosis thanks to the reduced distance between the internal fibers of the ligament and the host bone: the graft's healing process is expected to be shorter compared to traditional techniques.

DEDICATED IMPLANTS

The Tibial Pull Suture Plate (PSP) is a C-shaped extra cortical fixation device which is fixed in correspondence to the tibial tunnel, with its body sunk into the tibial tunnel and its edges seated on the tibial cortex, ensuring the correct orientation and tension of the graft.

Images by courtesy of Prof. Dr. Christian Fink, Gelenkpunkt, Innsbruck - Austria